Part of the Solution

Idealistic musings about eDiscovery

Tag Archives: technology-assisted review

On TAR 1.0, TAR 2.0, TAR 1.5 and … TAR 3.0?

The problem with technology-assisted review is that the best practices to bring about the most accurate, defensible review are, quite frankly, too onerous for most attorneys to accept.

In “TAR 1.0”, the initial iteration of computer-aided document analysis, as many documents as possible from the total corpus had to be loaded up into the TAR system and, from this nebulous blob of relevant data, non-relevant data, fantasy football updates and cat memes, a statistically-valid sample was drawn at random. It then fell to a senior attorney on the litigation team to manually review and code this “seed set”, after which the computer would identify similarities among documents with similar tags and try to extrapolate those similarities to the entire document corpus.

There are a number of aspects to modern document review that aren’t practical with this scenario – using unculled data to generate the seed set, assuming that you have most of the corpus documents to draw from at the outset – but the most glaring impracticality is also the most critical requirement of TAR 1.0:

Senior attorneys, as a rule, HATE to review documents.

It’s why they hire junior attorneys or contract reviewers. It’s because generally, senior attorneys’ time is better spent on tasks that are more overtly significant to their clients, which in turn justifies them to bill a lot more per hour than the reviewers do. And, if a statistically valid seed set contains some 2,400 randomly selected documents (presuming a confidence score of >95 percent and a margin of error of +/- two percent), that’s the better part of an entire workweek the senior attorney would have to devote to the review.

No wonder TAR 1.0 never caught on. It was designed by technologists – and brilliantly so – but completely ignored the realities of modern law practice.

Now we’re up to “TAR 2.0”, the “continuous active learning” method which has received less attention but is nonetheless a push in the right direction toward legal industry-wide acceptance. In TAR 2.0, the computer constantly re-trains itself and refines its notions of what documents do and do not meet each tag criterion, so that the initial seed set can be smaller and more focused more on documents that are more likely to be responsive, rather than scattershooting randomly across the entire document corpus. As more documents are loaded into the system, the tag criteria can be automatically applied during document processing (meaning that the new documents are classified as they enter the system), and refinements crafted as humans review the newly loaded docs would then in turn be re-applied to the earlier-predicted docs.

Now, that last paragraph makes perfect sense to me. The fact that, despite my editing and revisions, it still would appear confusing to the average non-techie is one of the big problems with TAR 2.0: those of us who work with it get it, but explaining it to those who don’t is a challenge. But the biggest problem I see with TAR 2.0 once again must be laid at the feet of the attorneys.

Specifically, most of the training and re-training in a TAR 2.0 system will come courtesy of the manual document reviewers themselves. Ignoring for a moment the likelihood that review instructions to an outsourced document review bullpen tend to be somewhat less than precise anyway, several reviewers can look at the same document and draw very different conclusions. Let’s say you have a non-practicing JD with a liberal arts background, a former corporate attorney with engineering and IP experience, an inactive plaintiff’s trial lawyer, and a paralegal who was formerly a nurse. Drop the same document – let’s say, a communiqué from an energy trader to a power plant manager – in front of all four, and ask them to tag for relevance, privilege, and relevant issues. You’re likely to get four different results.

Which of these results would a TAR 2.0 system use to refine its predictive capabilities? All of them. And TAR has not yet advanced to the sophistication required to analyze four different tagging responses to the same document and refine from them the single most useful combination of criteria. Instead, it’s more likely to cloud up the computer’s “understanding” of what made this document relevant or not relevant.

The IT industry uses the acronym GIGO: garbage in, garbage out. Blair and Maron proved back in 1985* that human reviewers tend not only to be inaccurate in their review determinations, but that they are also overconfident in their abilities to find sufficient documents that meet their criteria. In TAR 2.0, ultimately, the success or failure of the computer’s ability to accurately tag documents may be in the hands of reviewers whose only stake in the litigation is a paycheck.

Until last week, I was strongly in favor of a “TAR 1.5” approach: start with a smaller seed set reviewed and tagged by a more-senior attorney, let the TAR system make its initial definitions and determinations, use those determinations to cull and prioritize the document corpus, then let the document reviewers take it from there and use “continuous active learning” to further iterate and refine the results. It seemed to me that this combined the best practices from both versions of the process: start with the wisdom and craftsmanship of an experienced litigator and apply it to all the available documents, then leave the document-level detail to contract reviewers using the TAR-suggested predictions as guidance.

But last week, I interviewed with the founders of a small company that have a different approach. Neither desiring to put any pressure on the company nor wanting to inadvertently divulge any trade secrets that might have been shared, I won’t identify them and won’t talk about their processes other than to say that perhaps they’ve come up with a “TAR 3.0” approach: make automatic TAR determinations based on statistical similarity of aspects of the document, rather than on the entire content of each document. It’s a lawyerly, rather than a technical, approach to the TAR problem, which to me is what makes it brilliant (and brilliantly simple).

Whether I become part of this company or not, the people who run it have given me a lot to think about, and I’ll be sharing my thoughts on these new possibilities in the near future.

*David C. Blair & M.E. Maron, An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System, 28 COMMC’NS ACM 289 (1985).

Advertisements

Why Hasn’t TAR Caught On? Look In The Mirror.

Oh, this is good. If you haven’t already signed up for the ALM Network (it’s free, as is most of their content), it’s worth doing so just to read this post (first of a two-part series) from Geoffrey Vance on Legaltech News. It pins the failure of acceptance of technology-assisted review (TAR) right where it belongs: on attorneys who refuse to get with the program.

As I headed home, I asked myself, how is it—in a world in which we rely on predictive technology to book our travel plans, decide which songs to download and even determine who might be the most compatible on a date—that most legal professionals do not use predictive technology in our everyday client-serving lives?

I’ve been to dozens of panel discussions and CLE events specifically focused on using technology to assist and improve the discovery and litigation processes.  How can it possibly be—after what must be millions of hours of talk, including discussions about a next generation of TAR—that we haven’t really even walked the first-generation TAR walk?

Geoffrey asks why attorneys won’t get with the program. In a comment to the post, John Tredennick of Catalyst lays out the somewhat embarrassing answer:

Aside from the fact that it is new (which is tough for our profession), there is the point that TAR 2.0 can cut reviews by 90% or more (TAR 1.0 isn‘t as effective). That means a lot of billable work goes out the window. The legal industry (lawyers and review companies) live and die by the billable hour. When new technology threatens to reduce review billables by a substantial amount, are we surprised that it isn‘t embraced? This technology is driven by the corporate counsel, who are paying the discovery bills. As they catch on, and more systems move toward TAR 2.0 simplicity and flexibility, you will see the practice become standard for every review.

Especially with respect to his last sentence, I hope John is right.

Can You Be a “Salesman” and Still Be Part of the Solution?

I had a job interview by telephone last week. The position’s job posting read as though it had been lifted from my career bucket list; everything I want my career to be, and all the experience I have obtained, meshed perfectly with the contents of the job description.

I knew, however, that there might be more here than meets the eye when, upon initial contact, the reviewer mentioned that in addition to everything listed on the job posting, this would be “a true sales position”. I love to evangelize and identify solutions. I HATE to “sell”.

I thought the interview went fairly well (at least, for purposes of demonstrating my expertise). The interviewer disagreed; he even told me so during the call, saying that he didn’t hear me steering the conversation forcefully enough to specific solutions that could be presented. (Never mind the fact that the list of solutions this company represents is outdated and incomplete on their website, so I wasn’t sure what to recommend. The message was clear: I wasn’t SELLING hard enough.)

This brings me to a recent post on LinkedIn by Damian A. Durrant of Catalyst, entitled “More solving, less ‘selling'”. He believes as I do: don’t sell, SOLVE.

Sales is push, it says I am ramming something, anything, down your throat lubricated with lunch whether you need it or not. Unpleasant. Consulting is pull, it says I believe I have something that will help you, let’s talk about it. Better.

I have been a salesman. I have been a consultant. I much prefer the latter, as I am working to provide solutions. A salesman will make his numbers for the month. A solution provider will be someone the client goes back to again and again, because the provider makes the client’s job easier and less expensive. It’s the difference between making a one-time sale, and building a true relationship.

The e-discovery industry needs to shed itself of its copying and scanning “salesy” origins and start behaving more like the advisory firms, albeit more creatively, more nimbly and without the hefty billing rates.

Nicely said, Damian. Nicely said indeed.

I highly recommend you read his message.

It’s Worth The Reminder

If you have done one of these published “Q&A” things before, as I have, you know that the author not only provides the A, but also the Q. The author gets to emphasize exactly what she wants to emphasize, in exactly the way she wants to emphasize it. That being said, Gabriela Baron reminds us of some important ethical points on the subject of technology-assisted review that need emphasizing: specifically, that the ethical attorney must develop at least some competence with the technology:

Comment 8 to ABA Model Rule of Professional Conduct 1.1 requires lawyers to ‘keep abreast of changes in the law and its practice, including the benefits and risks associated with relevant technology.’ Lawyers need not become statisticians to meet this duty, but they must understand the technology well enough to oversee its proper use.

Her blog post is a pretty good, succinct summary, and one that bears being used to refresh our memory.

Why Manual Review Doesn’t Work

I’ve had the occasional conversation with Greg Buckles in which we take opposing views on the validity of the 1985 Blair-Maron study. Herb Roitblat now weighs in with a quite scientific, yet blissfully simple, explanation why manual review should never be considered the “gold standard” for document review accuracy.

It may seem that we have effective access to all of the information in a document, but the available evidence suggests that we do not. We may be confident in our reading ability, but at best we do a reasonable job with the subset of information that we do have.

Get to Herb’s conclusion to see what (besides the obvious) this has to do with technology-assisted review. It’s worth the read.

“Someday You are Bound to Crash and Burn”

Ralph Losey’s e-Discovery Team blog is often highly technical but always interesting. Ralph is one of the (if not the) leading theorist on search and prediction, and he excels at finding simple metaphors to explain his headache-inducing mathematical constructs. (Hey, I was a liberal arts major. I know my intellectual limits.)

In his latest post, Ralph compares Kroll Ontrack’s EDR software to a race car. The far-ranging post is worth a read, if only to get to his final paragraph, of which I agree with every syllable:

What passes as a good faith use of predictive coding by some law firms is a disgrace. Of course, if hide the ball is still your real game of choice, then all of the good software in the world will not make any difference. Keep breaking the law like that and someday you are bound to crash and burn.

New Ruling from Rio Tinto Case: Parties Can Use Keywords with Predictive Coding

Here’s a good post from Philip Favro at Recommind, regarding Judge Peck’s new “hot-button” case dealing with technology-assisted review:

New Ruling from Rio Tinto Case Confirms Parties Can Use Keywords with Predictive Coding.

Like King Solomon’s famous mandate to split the baby, the court’s middle ground decree wisely provided each party with a measure of what they requested while also resolving the dispute. By permitting Vale to cull down the document universe with search terms, the court honored the parties’ predictive coding use agreement as Vale had requested. However, the court placated Rio Tinto’s concerns by allowing it to propose search terms that might capture relevant information that might otherwise have been excluded.